Write the Given exponential equation as a logarithmic equation. (4-1a)

$$1.4^2 = 16$$

2.
$$e^{17} = a$$

2.
$$e^{17} = a$$
 3. $10^4 = 10,000$ 4. $b^p = a$

4.
$$b^p = a$$

Write the Given logarithmic equation as an exponential equation. (4-1a)

5.
$$\log_7 x = 10$$

6.
$$\ln x = 32$$

6.
$$\ln x = 32$$
 7. $\log 1000 = 3$ 8. $\log_{\Lambda} \Phi = \Psi$

8.
$$\log_{\Lambda} \Phi = \Psi$$

Evaluate the following expressions by using properties of logarithms. (4-2a)

9.
$$\log_{5} 5 =$$

$$\log_5 25 =$$

10.
$$e^{\ln 9} =$$

10.
$$e^{\ln 9} = \underline{} \qquad e^{\ln 10} = \underline{} \qquad 10^{\log 16} = \underline{}$$

$$10^{\log 16} =$$

Evaluate the following: (4-2a)

14.
$$7^{\log_7 12}$$

15.
$$\log_{12} 12^{15}$$

16.
$$\ln e^{32}$$

17.
$$10^{\log 14}$$

17.
$$\log_{5} \sqrt{5}$$

Write each as a single logarithm. Assume that all variables are positive. (4-2a)

18.
$$3\log_4 2 + \log_4 6$$

19.
$$3\log_7 y - 6\log_7 z$$

18.
$$3\log_4 2 + \log_4 6$$
 19. $3\log_7 y - 6\log_7 z$ 20. $3\log_2 x + \log_2 y - 2\log(xz)$

Use the properties of logarithms to expand the following. Express all exponents as coefficients. (4-2a)

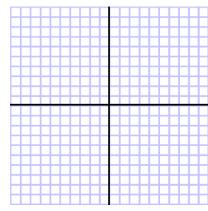
21.
$$\log_3 x^2 y^4$$

22.
$$\log_{12} \frac{x}{y^2}$$

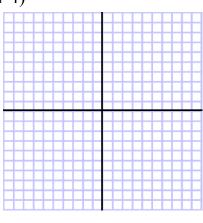
23.
$$\log_4 \frac{xy}{w^2}$$

Solve the following. Round your answer to the nearest hundredth. Check for extraneous solutions. (4-3a)

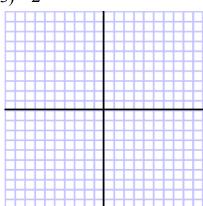
24.
$$4^{2x} + 6 = 262$$

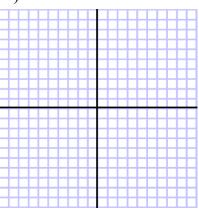

25.
$$7e^x = 500$$

26.
$$\log_2 x - \log_2 3 = 4$$


27.
$$ln(x+2) = ln 30$$

Graph the Following: (4-4b)


28.
$$f(x) = \ln(x) - 3$$


29.
$$f(x) = \log(x+4)$$

30.
$$f(x) = \log(x-3) - 2$$

31.
$$f(x) = \log(x+2) + 2$$

32. **(4-3a)** If Bob invests \$5,000 with a 4% interest rate compounded monthly, how long will it take until his investment has grown to \$7,000? $A = P\left(1 + \frac{r}{n}\right)^{nt}$

33. **(4-3a)** Find the amount accumulated from an investment of \$2,000 over 15 years at an interest rate of 6.2% compounded continuously. $A = Pe^{rt}$