5-3 Solving Exponential and Logarithmic equations

Objectives:

5-3a: I can solve exponential and logarithmic equations graphically.

5-3b: I can solve exponential and logarithmic equations algebraically.

Jan 3-2:07 PM

Inverses

Addition/Subtraction	Natural Log/e^	Common Log/10 [^]	Log base b/b^
x - 5 = 10	$\ln e^x = 5$ lo	$10^x + 100$	$2^{x} = 16$
+5 +5	X = ln 5	X = 2	
X = 15			X = 4)
x+7=21	$\ln x = 7$	$\log x = 3$	$\log_3 x = 4$
x=14	X = e ⁷	(X = 1000)	(x = 81)
7 - 19			

Solve the following WITHOUT a calculator

$$\log_{4}(x-1) = 1$$

$$|\log(4x)| = 2$$

$$|x-1| = 4$$

$$|x-2| = 4$$

$$|x-3|$$

$$|\log_{3}(2x-4)| = 3$$

$$|2x-4| = 27$$

$$|2x-3|$$

$$|x-1| \le 3$$

Jan 3-3:11 PM

Solve the following WITHOUT a calculator

$$\log(x+2) + 3 = 5$$

$$\log(x+2) = 2 \qquad x + 2 = 100$$

$$\ln(x+12) = 3\ln 2 \qquad \ln = \log_e$$

$$= \ln 2$$

$$\ln(x+12) = \ln 8$$

$$x + 12 = 8$$

$$x + 12 = 8$$

Solve the following WITHOUT a calculator

$$4^{3x-1} - 2 = 14$$

$$\log_{4}^{3x-1} = 2$$

$$\log_{4}^{3x-1} = 2$$

$$3 \times = 3$$

$$e^{2x+1} + 3 = 4$$

$$2x+1 = 0$$

$$2x+1 = 0$$

$$2x = -1$$

$$x = -\frac{1}{2} \text{ or } -5$$

RECALL: Solving Graphically

$$275e^{0.06x} = 1000$$

$$y_1 = 275e^{0.06x}y_2 = 1000$$

$$10^{2x} = 1500$$

$$y_1 = y_2 =$$

Now you try...solve the exponential & logarithmic equations graphically.

$$20^{2r} = 56$$

$$y_1 = y_2 =$$

$$e^{.23x} = 1.99$$

$$y_1 = y_2 =$$

Solve the following equations with a calculator.

$$\underbrace{10}_{5} = \underbrace{5}_{5}e^{4x}$$

$$.\frac{69}{9} = 4x$$

$$x = .17$$

$$6^{3x} = 12$$

$$4\ln(x+7) - 5 = 1$$

 $5^{x-1}-4=7$

Compound Interest Formula

$$A(t) = P\left(1 + \frac{r}{n}\right)^{nt}$$

P is the principal

r is the annual interest rate

n is the number of compounding periods per yeart is the time in years

Feb 15-11:03 AM

Many banks compound the interest on accounts daily or monthly. However, some banks compound interest continuously, or at every instant, by using the *continuous compounding formula*.

Continuous Compounding Formula

If *P* dollars are invested at an interest rate *r*, that is compounded continuously, then the amount, *A*, of the investment at time *t* is given by

$$A(t) = Pe^{rt}$$

P is principal (initial value)

r is interest rate

t is time (in years)

How long will it take for a \$250 initial investment in an account that pays 4.5% compounded continuously to grow to \$750?

Suppose that \$250 is deposited into an account that pays 4.5% compounded quarterly. Solve for t to find how long it will take for the account to contain at least \$500.

Jan 3-3:03 PM

$$2x^{2} + 4x + 7 = 6$$

$$2(x^{2} + 2x + \frac{7}{2}) = 6$$

$$2(x^{2} + 2x + 1 + \frac{7}{2} - 1) = 6$$

$$2(x+1)^{2} + \frac{5}{2} = 3$$

$$(x+1)^{2} + \frac{5}{2} = 3$$

$$(x+1)^{2} + \frac{5}{2} = 3$$

$$(x+1)^{2} + \frac{1}{2}$$

$$(x+1)$$

Comparing acidity:
$$pH = -\log[H^+]$$

 H^+ = hydrogen-ion concentration

$$\frac{2.4}{-1} = \frac{109(H^{+})}{10} = \frac{-2.4}{10} = \frac{109(H^{+})}{10} + \frac{1}{10} = \frac{-2.4}{10}$$

Vinegar has a pH of 2.4. What is it's hydrogen ion concentration?

$$\frac{2 \cdot 4}{10} = \frac{109 \cdot 10^{+}}{10^{-2} \cdot 4} = \frac{109 \cdot 10^{+}}{10^{-2} \cdot 4}$$
Baking soda has a pH of 8.4. What is it's hydrogen ion concentration?

$$8 \cdot 4 = -109 \cdot (H^{+})$$

$$-8 \cdot 4 = 109 \cdot (H^{+})$$

Which has a higher hydrogen ion concentration?