4-2 Finite Geometric Series

Objectives:

- I can write a series using sigma notation
- I can find the sum of a series

Warm - up

1. Write a recursive rule and an explicit rule for the sequence:

2. Find the stated term of the geometric sequence:

$$f(n) = -3(2)^{n-1}$$

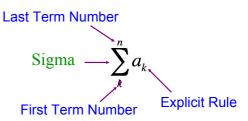
$$f(n) = -3(2)^{n-1}$$

$$= -3(2)^{8}$$

Jun 3-1:09 PM

Jan 4-4:52 PM

You have 2 biological parents, 4 biological grandparents, and 8 biological great-grandparents. How many great-great-great-grandparents (6th generation) do you have?


grandparents (6th generation) do you have?

2, 4, 8 (6, 32, 64)

$$f(n) = 2(2)^{n-1}$$

How many total incestors do you have if you trace your ancestry back 6 generations?

Series: adding together all the numbers in a sequence

Summation notation:
$$\sum_{k=1}^{n} a_k = a_1 + a_2 + a_3 + ... + a_n$$

Find the following sums:

a.
$$\sum_{k=1}^{5} 3k = 3(1) + 3(2) + 3(3) + 3(4) + 3(5)$$

$$= 3 + 6 + 9 + 12 + 15$$
b.
$$\sum_{k=5}^{8} k^{2}$$

b.
$$\sum_{k=5}^{8} k^2$$

c.
$$\sum_{k=3}^{7} 4 \times + 1$$

Under math button on the calculator

Jun 3-1:34 PM

Write the following in sigma notation and then find the sum

A geometric series that begins with 3, a common factor of 2, with 6 terms

$$\sum_{n=1}^{6} \left(3\left(2\right)^{n-1}\right) =$$

A geometric series that begins with 5, a common factor of 3, with 7 terms

$$\sum_{n=1}^{7} \left(5\left(3\right)^{n-1} \right)$$

Process

- Determine the common ratio
- Write an explicit rule
- Figure out how many total terms
- Write in sigma notation
- Evaluate on calculator

Aug 23-3:21 PM

$$\underset{n=1}{\overset{6}{\lesssim}} \left(\frac{1}{4} \left(2 \right)^{n-1} \right) = 252$$

Find the sum of the series

Aug 23-3:26 PM