3.7 Implicit Differentiation

Objectives:

- I can take the derivative by implicit differentiation

Oct 4-3:46 PM

Consider
$$x^2 + y^2 = 9$$

$$2 \times \frac{d \times}{d \times} + 2 + \frac{d \times}{d \times} = 0$$

$$2 \times + 2 + \frac{d \times}{d \times} = 0$$

$$2 \times + 2 + \frac{d \times}{d \times} = 0$$

$$2 \times + 2 \times \frac{d \times}{d \times} = 0$$

1. Find the equation of the tangent line through $(2,-\sqrt{5})$

$$y + \sqrt{5} = \frac{2}{\sqrt{5}} (x-2)$$

$$y = \frac{2}{\sqrt{5}} (x-2) - \sqrt{5}$$

Steps for implicit differentiation

- of event term
- I. Take the derivative with respect to x
- II. Solve for $\frac{dy}{dx}$

Oct 4-3:49 PM

For each of the following: A) find

B) Find the equation of the tangent and normal line at the given point

$$y^{2} = x \quad (4, -2)$$

$$x^{2} - y^{2} = 25 \quad (-5, 0)$$

$$2 \times -2y \frac{dy}{dx} = 0$$

$$-2y \frac{dy}{dx} = -2x$$
tan line
$$y = -\frac{1}{4}(x - 4) - 2$$

Oct 4-3:50 PM

Find
$$\frac{dy}{dx}$$
 $x^2 = \frac{x^2 + 1}{y^2}$

$$(4^4)^2 = \frac{y^2(2x) - (x^2 + 1)(2y \frac{dy}{dx})}{y^4}$$

$$2xy^4 = 2xy^2 - (2x^2y \frac{dy}{dx} + 2y \frac{dy}{dx})$$

$$2xy^4 = 2xy^2 - 2x^3y \frac{dy}{dx} - 2y \frac{dy}{dx}$$

$$2xy^4 - 2xy^2 = -2x^2y \frac{dy}{dx} - 2y \frac{dy}{dx}$$

$$2xy^4 - 2xy^2 = -2x^2y \frac{dy}{dx} - 2y \frac{dy}{dx}$$

$$2xy^4 - 2xy^2 = -2x^2y \frac{dy}{dx} - 2y \frac{dy}{dx}$$

$$2xy^4 - 2xy^2 = \frac{dy}{dx}(-2x^2y - 2y)$$

$$-2x^2y - 2y$$

Oct 4-3:54 PM

Find
$$\frac{dy}{dx}$$
 $y^2 = \frac{x^2 - 1}{x^3}$

Find
$$\frac{dy}{dx}$$
 $x^2 + 2xy + y^2 = 0$

$$2x + 2x \frac{dy}{dx} + 2y + 2y \frac{dy}{dx} = 0$$

$$2x \frac{dy}{dx} + 2y \frac{dy}{dx} = -2x - 2y$$

$$\frac{dy}{dx} \left(2x + 2y\right) = -2x - 2y$$

$$\frac{dy}{dx} = \frac{-2x - 2y}{2x + 2y} = \frac{-2(x+y)}{2(x+y)} = (-1)$$

Oct 4-3:56 PM

Find
$$\frac{d^2y}{dx^2}$$
 $y^2 = x^2 + 2x$

$$2y \frac{dy}{dx} = 2x + 2$$

$$\frac{d^2y}{dx^2} = \frac{y(1) - (x+1)\frac{dy}{dx}}{y^2}$$

$$\frac{dy}{dx} = \frac{x(x+1)}{y}$$

$$\frac{d^2y}{dx^2} = \frac{y - (x+1)(\frac{x+1}{y})}{y^2}$$

$$\frac{d^2y}{dx^2} = \frac{y^2 - (x+1)^2}{y^2} = \frac{y^2 - (x+1)^2}{y^2}$$

$$\frac{d^2y}{dx^2} = \frac{y^2 - (x+1)^2}{y^2} = \frac{y^2 - (x+1)^2}{y^2}$$