\qquad
\qquad

Solve the equation.

1. $\sqrt{x-9}=5$
2. $\sqrt{3 x}=6$
3. $\sqrt{x+3}=x+1$
4. $\sqrt{15 x+10}=2 x+3$
5. $(x+4)^{\frac{1}{2}}=6$
6. $(3 x-6)^{\frac{1}{2}}=x-2$
7. $5-\sqrt[3]{x-4}=2$
8. $2 \sqrt[3]{3 x+2}=\sqrt[3]{4 x-9}$
9. $(x+7)^{\frac{1}{3}}=(4 x)^{\frac{1}{3}}$
10. $(5 x+1)^{\frac{1}{4}}=4$
11. $2(x-1)^{\frac{1}{5}}=(2 x-17)^{\frac{1}{5}}$
12. The surface area S of a human body in square meters can be approximated by $S=\sqrt{\frac{h m}{36}}$ where h is height in meters and m is mass in kilograms. A basketball player with a height of 2.1 meters has a surface area of about $2.7 \mathrm{~m}^{2}$. What is the player's mass?
13. For a spinning amusement park ride, the velocity, v, in meters per second, of a car moving around a curve with radius r meters is given by $v=\sqrt{a r}$ where a is the car's acceleration in m / s^{2}. If the ride has a maximum acceleration of $30 \mathrm{~m} / \mathrm{s}^{2}$, and the cars on the ride have a maximum velocity of $12 \mathrm{~m} / \mathrm{s}$, what is the smallest radius that any curve on the ride may have?
14. Below is a student's work in solving the equation $2 \sqrt{3 x+3}=12$. What mistake did the student make? What is the correct solution?

$$
\begin{aligned}
2 \sqrt{3 x+3} & =12 \\
2(\sqrt{3 x+3})^{2} & =12^{2} \\
2(3 x+3) & =144 \\
6 x+6 & =144 \\
x & =23
\end{aligned}
$$

