## 3.2 Differentiability

## **Objectives:**

- I can determine if a function is differentiable

Aug 13-3:34 PM

Given  $f(x) = \frac{1}{2}x^2$  find the slope of the secant line of f(x) over [1,5]

$$\frac{f(5)-f(1)}{5-1}=\frac{12.5-5}{4}=\frac{12}{4}=\boxed{3}$$

Find the average rate of change of f(x) over [2,4]

$$\frac{f(4)-f(2)}{4-2}=\frac{8-2}{2}=3$$

Find the average rate of change of f(x) over [2.5,3.5]

$$\frac{f(3.5)-f(2.5)}{3.5-2.5}=3$$

Choose an interval from the last slide that gives the best approximation of f(3). Explain why your method gives an accurate approximation

$$\frac{1}{3} \qquad [3-h, 3+h]$$

Could you use this process to find f'(x)? Why or why not?

Find f'(x) = 
$$\lim_{h \to 0} \frac{f(x+h) - f(x-h)}{(x+h) - (x-h)}$$

Find f'(3)

$$\lim_{h \to 0} \frac{\frac{1}{2}(x+h) - f(x-h)}{2h}$$
Find f'(3)

$$\lim_{h \to 0} \frac{\frac{1}{2}(x+h)^2 - \frac{1}{2}(x+h)^2}{2h}$$

$$= \lim_{h \to 0} \frac{\frac{1}{2}(x+h)^2 - \frac{1}{2}(x+h)^2}{2h}$$

Aug 13-3:39 PM

## Differentiability

$$f(x) = \begin{cases} x+2 & \text{if } x < -1 \\ x^2 & \text{if } -1 \le x \le 1 \\ 2x-1 & \text{if } x > 1 \end{cases}$$



The graph of f(x) is given. What do you observe at x=-1 and x=0?

**Definitions** 

 $\stackrel{\bigstar}{\not x}$ (x) is differentiable at x if f'(x) exists

 $^{\star}f(x)$  is a differentiable function if f'(x) exists for all x ☆in the domain

In what cases would a function not be differentiable at a point x=a?











Aug 13-3:48 PM

## Exploring differentiability with local linearity

Compare  $f(x) = \sqrt{x^2 + .001} + .99$  and g(x) = |x| + 1in your calculator.





How do differentiability and continuity relate to each

\* If a func. is differentiable > continuous

\* Il a func. is continuous & differentiable



Aug 13-3:52 PM