P.3 Equations and Inequalites

Objectives: 1) I can determine if an equation is linear.

- 2) I can solve multi-step linear equations.
- 3) I can solve linear inequalites.

Aug 27-10:43 PM

What makes a linear equation?

A *linear equation* in 1 variable- is an equation that has one unknown and the unknown is written to the first power.

$$ax + b = 0$$

Examples

$$4x - 3 = 12 \qquad \frac{2}{3}y + \frac{1}{5} = \frac{2}{15}$$

$$\frac{2}{x} = 20$$
Not
 $2x^{-1} = 20$
Unearly
Nah Bruh

Solving Linear Equations

Ex 1 which of the following numbers are a solution.

Aug 27-10:54 PM

More examples (use inverse operations!)

$$3y - 2 + 5y = 2y + 5 + 4y + 3$$

$$\frac{8y - 1 - 6y + 8}{-6y + 2 - 6y + 2} = 10$$
Ex. 2

$$4(x+3) = x - 3(x-2)$$

$$4x + 12 = x - 3x + 6$$

$$4x + 12 = -2/x + 6$$

$$4x + 12 = -2/x + 6$$

$$4x + 12 = -2/x + 6$$

$$4x + 12 = x - 3x + 6$$

$$4x + 12 = x - 3x + 6$$

$$4x + 12 = x - 3x + 6$$

$$4x + 12 = x - 3x + 6$$

$$4x + 12 = x - 3x + 6$$

$$4x + 12 = x - 3x + 6$$

$$4x + 12 = x - 3x + 6$$

$$4x + 12 = x - 3x + 6$$

$$4x + 12 = x - 3x + 6$$

$$4x + 12 = x - 3x + 6$$

$$4x + 12 = x - 3x + 6$$

$$4x + 12 = x - 3x + 6$$

$$4x + 12 = x - 3x + 6$$

$$4x + 12 = x - 12$$

$$6x = -6$$

Ex. 3

Ex. 4

$$\frac{3}{3} = \frac{12}{11} \times \frac{3}{11} = \frac{12}{11} \times \frac{3}{11} = \frac{3}{11} \times \frac{3}$$

Aug 3-1:49 PM

$$\frac{3y}{2} + \frac{y}{6} = \frac{10}{3}$$

Solve the inequalities and graph the solution.

Aug 27-11:02 PM

Representing Inequalities Using a Real Number Line and Interval Notation

Table 7		
Interval	Inequality Notation	Graph
The open interval (a, b)	$\{x a < x < b\}$	a b
The closed interval [a, b]	$\{x a\leq x\leq b\}$	- t - t
The half-open interval $[a, b)$	$\{x a \le x < b\}$	₹ a b
The half-open interval (a, b)	$\{x a < x \le b\}$	a b
The interval $[a, \infty)$	$\{x x \ge a\}$	- [
The interval (a, ∞)	$\{x x>a\}$	a
The interval $(-\infty, a]$	$\{x x\leq a\}$	- 1 a
The interval $(-\infty, a)$	$\{x x < a\}$	
The interval $(-\infty, \infty)$	$\{x x \text{ is a real number}\}$	

Solve the compound inequalities and graph.

Aug 27-11:18 PM

