Defining and Evaluating Logarithms Review

Objective: I can evaluate a logarithmic expression

How could we solve each of the following equations algebraically for x?

$$x^2 = 9$$

$$\times 3^{\times} = 9$$

What's the difference?

Problems like $3^x = 9$

are why we have logarithms!

What does this problem mean? Estimate the value for x.

$$5^{\frac{5}{25}}$$
 $5^{\frac{5}{25}}$
 $5^{\frac{5}{25}}$
 $5^{\frac{5}{25}}$

Estimate the value for x.

$$3^{x} = 90$$

$$y^x = z$$

Logarithm Activity! Yay!

What does the following equation mean?

$$\log_4 16 = x$$

Evaluate the following logarithms.

$$log_2 8$$

$$\log_2 32$$

$$\log_2 \frac{1}{4}$$

$$\log_4 \frac{1}{64}$$

Exponential Equation

Logarithmic Equation

$$b^{x} = a \longrightarrow \log_{b} a = x$$

$$2^{x} = 16$$

$$\log_{b} a = x$$

Switch between Log and exponential forms

Exponential Equation	Logarithmic Equation
3 ⁵ = 243	109343=5
4-3 = 1	$\log_4 \frac{1}{64} = -3$
$\left(\frac{3}{4}\right)' = s$	
	$\log_{\frac{1}{5}}v=w$

log₂₅ What about these?
$$\log_8 \frac{1}{64} = -2$$

$$\log_{25} 5 \qquad \log_8 2 \qquad \log_{125} 5$$

$$\frac{1}{25} = 25$$

Notice a pattern?

And these?

$$\log_{\frac{1}{4}} 16$$

$$\log_{\frac{1}{2}} 8$$

$$\log_{\frac{1}{3}} 81$$

Notice a pattern?

Evaluate the following logarithms.

$$\log_{27} 3$$

$$\log_{\frac{1}{4}} 64$$

$$\log_{81} 9$$

$$\log_{\frac{1}{7}} 243$$

Here are some fun ones!

$$\log_{80} \frac{1}{9} \qquad \log_{16} \frac{1}{2} \\
 -\frac{1}{2} \qquad -\frac{1}{4}$$

$$10949\frac{1}{7}$$
 $49^{0}=\frac{1}{7}$

Last ones.

$$\log_0 3$$
 $\log_{16} -\frac{1}{2}$ $\log_{16} 0$ undefined and

Why don't these work?