Secondary II
9-5 General Multiplication Rule

Name \qquad Period \qquad
Events $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are independent, and $\mathrm{P}(\mathrm{A})=0.5, \mathrm{P}(\mathrm{B})=0.25, \mathrm{P}(\mathrm{C})=0.75$, and $\mathrm{P}(\mathrm{D})=0.1$. Find each probability.

1. $P(A$ and $B)$
2. P(A and C)
3. $\mathrm{P}(\mathrm{C}$ and B$)$
4. P(C and D)
5. P(A and D)
6. $\mathrm{P}(\mathrm{B}$ and D$)$

Refer to the spinner shown below in which each numbered section is exactly $\frac{1}{8}$ of the circle. Find the probability of each event in three spins of the spinner.
7. All three numbers are 3 or greater than 5 .
8. All three numbers are 4 or less than 6 .

9. All three numbers are 7's.
10. All three numbers are even.
11. Suppose that the probability of Kevin coming to a party is 80% and the probability of Judy coming to a party is 95%. Assuming that these events are independent, what is the probability that they both will come to a party?
12. The integers 1 through 15 are written on slips of paper and placed into a box. One slip is selected at random and put back into the box, and then another slip is chosen at random.
a. What is the probability that the number 8 is selected both times?
b. What is the probability that the number 8 is selected exactly once? (Hint: Find the probability that an 8 is selected on the first or second draw, but not on both draws.)
13. An airline's records show that its flights from Los Angeles to Dallas arrive on schedule 92% of the time. They also show that its flights from Dallas to Miami leave on schedule 97% of the time. If you fly from Los Angels to Miami with a connection through Dallas, what is the probability that you will arrive at Dallas and leave from Dallas at your scheduled times?

Answer Key

1. . 125
2. . 1875
3. . 05
4. $\frac{1}{8}$
5. $\frac{1}{512}$
6. 76%
7. 89.24%
