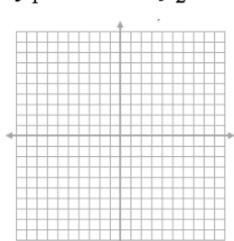
# 6-2 Solving Exponential and Logarithmic equations

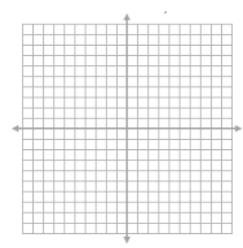
#### Objectives:

6-2a: I can solve exponential and logarithmic equations graphically.


6-2b: I can solve exponential and logarithmic equations algebraically.

#### **Solving Graphically**

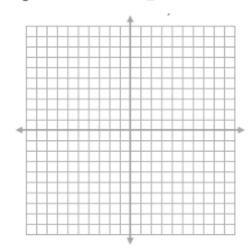
Graph each side of the equation as their own graphs and find the intersection.


$$275e^{0.06x} = 1000$$

$$y_1 = y_2 =$$

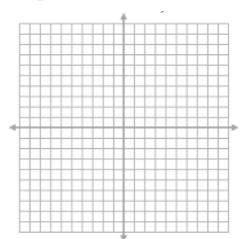


$$10^{2x} = 1500$$


$$y_1 = y_2 =$$



Now you try...solve the exponential & logarithmic equations graphically.


$$20^{2r} = 56$$

$$y_1 = y_2 =$$



$$e^{.23x} = 1.99$$

$$y_1 = y_2 =$$



## Logarithmic equations are the inverse of Exponential equations

Exponential Equation Logarithmic Equation  $b^{x} = a \qquad \log_{b} a = x$   $b > 0, b \neq 1$ 

#### Inverses

| Addition/Subtraction | Natural Log/e^ | Common Log/10 <sup>^</sup> | Log base b/b^  |
|----------------------|----------------|----------------------------|----------------|
| x-5=10               | $e^x = 5$      | $10^x = 100$               | $2^{x} = 16$   |
|                      |                |                            |                |
|                      |                |                            |                |
| x+7=21               | $\ln x = 7$    | $\log x = 3$               | $\log_3 x = 4$ |
|                      |                |                            |                |
|                      |                |                            |                |

#### Solve the following equations

$$10 = 5e^{4x}$$

$$5^{x-1} - 4 = 7$$

$$\log_3(2x-4)=4$$

$$6^{3x} = 12$$

$$\ln(x+12)=3\ln 2$$

$$\log(4x) = 2$$

$$4\ln(x+7) - 5 = 1$$

#### Day 2

$$\log_6 x + \log_6 (x+1) = 2$$

$$\log_5(x^2+1)-\log_5 10=1$$

$$2^{x+1} \cdot 2^{x+3} = 1$$

$$3^x \cdot 3^{x-4} = 27$$

$$\frac{2^{2x+5}}{2^{x+7}} + 4 = 20 \qquad \log_3 \sqrt{2x+6} = \log_3 x + \log_3 2$$