\qquad

4-2 Modeling with Exponential Functions

Write an exponential function that models the situation.

1. Initial value $=5$, increasing at a rate of 17% per year.
2. Initial value $=\$ 500$, compounded continuously at a rate of 8% per year.
3. Initial value $=\$ 4000$, decreasing at a rate of 5.5% per year.
4. Initial value $=\$ 100$ compounded monthly at a rate of 4% for 3 years.

For the following situations, write the exponential function that models the situation, then answer the questions.
5. In the year 2011, the population of Eagle Mountain was 23,161 . The population was increasing at an estimated rate of 4.23% per year.

Predict the population of Eagle Mountain in 2015.

Using the same model, predict when the population reach 100,000 ?
6. The US Gold Dollar that was made from 1849 - 1854 (shown to the right) is currently worth about $150 \$$. If the coin's value increases at a rate of 2.7% per year:

Predict its value 10 years from now.

How long until it is worth $\$ 500$?

7. If Hugh invests $\$ 1500$ at 4% compounded semi-annually, how much money will he have after 7 years?
8. If Hugh invests $\$ 1500$ at 4% compounded continuously, how much money will he have after 7 years?
9. Melba bought a car worth $\$ 15,000$ in 2018. The car depreciates in value at a rate of 13% annually. In what year will her car be valued at $\$ 5000$?
10. If Bob invests $\$ 2400$ at 3.6% compounded continuously, how long will it take him to double his money?
11. The initial population of bacteria in a culture dish is 100 . This type of bacteria divides every hour (population doubles every hour, which is a growth rate of 100%).

What is the bacterial population after 8 hours?

How long until the population reaches 200,000 ?
12.

Explain the Error A student has a baseball card that is worth $\$ 6.35$. He looks up the appreciation rate and finds it to be 2.5% per year. He wants to find how much it will be worth after 3 years. He writes the function $f(t)=6.35(2.5)^{t}$ and uses the graph of that function to find the value of the card in 3 years.

According to his graph, his card will be worth about $\$ 99.22$ in 3 years.
What did the student do wrong? What is the correct answer?

