

Student Participation vs. Test Score

2.6 Rational Graphs

Objectives: (See objective sheet \#1-16)

Look at the following Graphs $f(x)=\frac{1}{x}$ and $f(x)=\frac{1}{x^{2}}$ and compare. What is going on?

X and Y Intercepts
Y intercepts, $\mathrm{x}=0$

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
f(x)=\frac{3 x-12}{x^{2}-5 x-6} \\
(0,2)
\end{array} \quad \frac{0-12}{0-0-6}=\frac{-12}{-6}=2\left(\begin{array}{l}
(0, y) \\
x \text { intercepts, } \mathrm{y}=0
\end{array}\right. \\
\begin{array}{l}
f(x)=\frac{3 x-12}{x^{2}-5 x-6} \\
25 x-60=\frac{3 x-12}{x^{2}-5 x-6} *
\end{array} \quad \frac{3 x-12}{(x-6)(x+1)}=0
\end{array} \\
& 0=3 x-12 \\
& \begin{array}{c}
12=3 x \\
4=x
\end{array} \quad(4,0)
\end{aligned}
$$

Find the x and y intercepts of the following functions:
$f(x)=\frac{\theta^{2}-2-3}{*+2}$

$$
f(x)=\frac{3 x-5}{x^{2}-5 x+6}
$$

$0=x^{2}-2 x-3$
x-int: $0=(x-3)(x+1) x$-int:
y-int: $(3,0)^{3}(-1,0)$

$$
\frac{-3}{2}(0,-3 / 2)
$$

What will these functions look like?

$$
f(x)=\frac{1}{(x+1)} \quad f(x)=\frac{(x+2)}{(x+1)}
$$

Holes and Vertical asymptotes

$$
\begin{array}{cc}
f(x)=\frac{(x+3) \sqrt{x-2)}}{\frac{(x+2)}{(x-2)}} & \frac{(x+3)(x-2)}{(x-2)(x+1)} \\
\frac{x+3}{x+1} & \text { VA: } x=2 \\
x=-1
\end{array}
$$

$$
\begin{aligned}
f(x) & =\frac{2 x-3}{x+1} \\
(x+1) O & =\frac{2 x-3(x+1)}{x+1} \\
0 & =2 x-3 \\
3 & =2 x \\
x & =3 / 2 \quad(3 / 2,0)
\end{aligned}
$$

Domain: $(-\infty, i) y-1,1,0$ xint: $(3 / 2,0)$

$$
y \operatorname{lnt}:(0,-3)
$$

$$
\sqrt{A}: x=-1
$$

$$
\text { Holess: } N / A
$$

$$
\frac{2(0)-3}{0+1}=\frac{-3}{1}
$$

Find the holes, vertical asymptotes, and intercepts.
a. $f(x)=\frac{5 x}{(x+2)}$
b. $f(x)=\frac{2 x^{3}}{(x-5)}$
, $A=x=5$
V. $A=x=-2$

Hole(s): xint: $(0,0)$ yint: $(0,0)$ xint: $(0,0)$ yint: $(0,0)$
c. $f(x)=\frac{(x+2)}{(x+2)(x-2)}$

$$
\text { (d) } f(x)=\frac{\left(x^{2}-9\right)}{\left(x^{2}-5 x+6\right)} \frac{9}{-6}
$$

$V A=2$
(0-9)
Hole(s) 3
$x \mathrm{int}^{2}-z_{-3}$

Horizontal Asymptotes (End Behavior):

 To find the Horizontal Asymptote (end behavior model), compare the degrees of the numerator and denominator.$$
7 \text { the degree in num vs.denom }
$$

Bottom heavy: $\mathrm{y}=0$
Equal: y = divide leading coefficients
Top heavy: divide equation - result is EBM

Bottom heavy: $\mathrm{y}=0$

$$
\begin{array}{r}
f(x)=\frac{(x+2)}{x_{\uparrow}^{2}+2 x+1} \\
\frac{1}{x}=\frac{1}{100} \Rightarrow 00
\end{array}
$$

November 12, 2019

Equal: y = divide leading coefficients

Top heavy: divide equation - result is End Behavior Model

$$
\begin{aligned}
& f(x)=\frac{x^{2}-x-6}{x-3} \quad f(x)=\frac{\left(x^{2}-x-5\right)}{x-3} \\
& f(x)=\frac{(x-3)(x+2)}{x-3 \sqrt{x+2}} \\
& x=3
\end{aligned}
$$

$$
f(x)=\frac{3 x-7}{x-2}
$$

Holes:
VA: x int:
y int:
HEB:
$f(x)=\frac{3 x-2}{x-1}$

Holes:
VA:
x int:
y int:
HEB:

$$
f(x)=\frac{x-1}{x^{2}-x-12}
$$

Holes:
VA:
x int:
y int:
HEB:

$$
f(x)=\frac{x-1}{(x+2)(x-2)}
$$

Holes:
VA:
x int:
y int:
HEB:

$$
f(x)=\frac{-(x+1)(x+2)}{(x+3)(x+2)(x-1)^{2}}
$$

Holes:
VA:
x int:
y int:
HEB:

