graph. $f(x) = -x^3(x+1)(x-6)$

2.4B Real Zeros of a Polynomial

Objective: 10) I can use the Rational Roots Theorem to list the possible zeros of a polynomial.

- 11) I can write a linear factorization of a polynomial function.
- 12) I can write a polynomial function given zeros and multiplicity.

Oct 17-11:00 AM

Oct 28-9:54 AM

Write the polynomial function for the given degree and zeros.

Degree 3, with -1, 4, 2 as zeros.

(x+1)

With your partner:

Degree 3, with 1/2, -3, and 0 as zeros.

$$f(x) = x(x+3)(2x-1)$$

$$(x^{2}+3x)(2x-1)$$

$$2x = \frac{1}{3}$$

$$2x = \frac{1}{3}$$

*Rational Zeros Theorem If all coefficients are integers and the constant is not 0, then all possible rational roots are:

 $x = \pm \frac{\text{factors of constant}}{\text{factors of leading coefficient}}$

Oct 28-9:59 AM Oct 28-10:02 AM List the possible zeros of $f(x) = 3x^3 - 5x^2 - x + 2$

$$X = \pm \frac{1,2}{1,3} = \pm 1,2,\frac{1}{3},\frac{2}{3}$$

Find all zeros of the polynomials and write a linear factorization.

$$f(x) = 3x^{3} + 4x^{2} - 5x - 2$$

$$X = \pm \frac{1}{13} = \pm \frac{1}{2}, \frac{1}{3}, \frac{2}{3}$$

$$3 + \frac{1}{2} = \pm \frac{1}{2}, \frac{1}{2}, \frac{2}{3}$$

$$3 + \frac{1}{2} = \pm \frac{1}{2}, \frac{1}{2}, \frac{2}{3} = \pm \frac{1}{2}$$

$$3 + \frac{1}{2} = \pm \frac{1}{2}$$

$$3 + \frac{1}{2} = \pm \frac{1}{2}$$

$$(3x + 1)(x + 2)$$

$$X = \frac{1}{2} = \pm \frac{1}{2}$$

$$X = -\frac{1}{2} = \pm \frac{1}{2}$$

Oct 28-10:26 AM

Oct 28-10:29 AM

Find all zeros of the polynomials and write a linear factorization.

Find all zeros of the polynomials and write a linear factorization.

With your partner:

$$f(x) = 2x^{2} - 7x^{3} - 8x^{2} + 14x + 8$$

$$x = \pm \frac{1}{2}, \frac{1}{2}, \frac{1}{3} = \pm \frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{1}{3}$$

$$\frac{4}{2} = -\frac{1}{2} - \frac{1}{2}, \frac{1}{3}, \frac{1}{3}$$

$$\frac{2}{2} + \frac{1}{2} - \frac{1}{2} = \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}$$

$$\frac{2x^{3} + x^{2} - 4x - 2}{x^{2}(2x + 1) - 2(2x + 1)}$$

$$(2x + 1)(x^{2} - 2)$$

$$x = -\frac{1}{2} = x^{2} - 2 = 0$$

$$x^{2} = 2$$

$$x = \pm \sqrt{2}$$

Oct 7-3:22 PM

Oct 28-10:38 AM

Oct 28-10:51 AM