2.3 Polynomial Functions

Objectives: 1) I can find the zeros of a polynmial function by factoring.

- 2) I can use a graph to locate zeros.
- 3) I can describe the end behavior of a function using limits.
- 4) I can determine the multiplicity of a zero.
- 5) I can sketch the graph of a polynomial function by finding zeros, multiplicity, and end behavior.

Zeros

A zero is the value for "x" that makes f(x) = 0.

Remember f(x) = y so zeros are where the graph touches the x-axis.

Oct 26-8:29 PM

Oct 27-7:08 AM

Finding Zeros

Algebraically: 1) Factoring!!

$$(x-1)(x+2)(x+3)$$

$$(x-1)(x+2)(x+3)$$

$$(x-1)(x+2)(x+3)$$

$$(x-1)(x+2)(x+3)$$

$$h(x) = 3x^3 - 5x^2 + 2x$$

$$h(x) = x (3x^2 - 5x + 2)$$

$$0 = \chi(3 \times -2)(\chi - 1).$$

$$\chi = 0 \frac{3x - 2 - 0}{\chi = \frac{2}{3}} \frac{\chi - 1 - 0}{\chi = 1}$$

2) Graphically

State the zeros of the function.

X=-2,2,4

End Behavior

Limit notation:

$$\lim_{x \to -\infty} f(x) = \lim_{x \to \infty} f(x) =$$

"As x approaches infinity/negative infinity, f(x), or y, approaches

Look at graphs on previous slide.

Oct 26-9:13 PM

Oct 26-9:47 PM

What is the degree of the following polynomials?

$$f(x) = -89x^6 + 3x^5 + 2x^3 - 7x + 2$$
 Des

$$g(x) = x^2(x-3)(x+5)^3(x+1)^2$$
 Dey 8

$$h(x) = (x-5)^2 (x+2)^3$$

$$k(x) = \frac{5}{3}x^5 + 3x^3 - 7x^2 + x - 12$$

★The degree determines end behavior.★

Odd degree: positive negative

$$\lim_{x \to -\infty} f(x) = \infty \quad \lim_{x \to -\infty} f(x) = \infty$$

$$\lim_{X\to\infty} f(x) = \infty \qquad \lim_{X\to\infty} f(x) = -\infty$$

Even degree: positive negative

$$\lim_{x \to -\infty} f(x) = \infty \qquad \lim_{x \to -\infty} f(x) = -\infty$$

$$\lim_{X\to\infty} f(X) = \infty \qquad \lim_{X\to\infty} f(X) = -\infty$$

2.3 Polynomial Functions Filled In.notebook

Multiplicity

The **power** of the factor determines the nature of the intersection at the point x = a. (This is referred to as the multiplicity.)

Straight intersection: (crosses straight...ly) $(x - a)^{t}$ The power of the zero is 1.

Tangent intersection : (bounces) $(x - a)^{\text{even}}$ The power of the zero is even.

Inflection intersection: (crosses squiggggllly) $(x - a)^{\text{odd}}$ The power of the zero is odd. $/ \gamma$

Find the zeros, the multiplicity, end behavior and graph the following

$$f(x) = (x-2)^3 (x+1)^2$$

$$X=2$$
 mult 3
 $X=-1$ mult 2

$$f(x) = (x+3)^2 (x-2)^3 (x-4)$$

$$f(x) = -x^2(x-2)^2(x+4)^2$$

$$X = 0$$
 mult 2
 $X = 2$ mult 2
 $X = -4$

Oct 27-7:19 AM

Oct 27-7:29 AM

Find the zeros, the multiplicity, end behavior and graph the following

$$f(x) = x^{\frac{1}{2}} - 7x^{\frac{2}{2}} - 18x^{2}$$

$$= x^{2}(x^{2} - 7x - 18)$$

$$= x^{2}(x - 7)(x + 2)$$

X=0 X=9 X=-2

